Surname	Centre Number	Candidate Number
First name(s)		2

GCE AS

B410U20-1

TUESDAY, 23 MAY 2023 - MORNING

CHEMISTRY - AS component 2

Energy, Rate and Chemistry of Carbon Compounds

1 hour 30 minutes

	For Exa	aminer's us	e only
	Question	Maximum Mark	Mark Awarded
Section A	1. to 6.	10	
Section B	7.	19	
	8.	12	
	9.	9	
	10.	16	
			·

14

80

11.

Total

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- Data Booklet supplied by WJEC.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer **all** questions. **Section B** Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in Q.9(a).

PMT

SECTION A

Answer all questions.

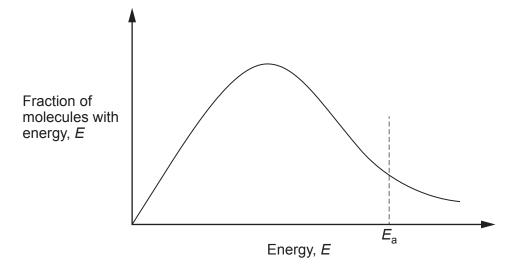
Name the compound whose formula is shown below.

[1]

Geraniol is an alcohol which occurs in the essential oils of many aromatic plants. Its skeletal formula is shown below.

Give the **molecular** formula of geraniol.

[1]


3. State the meaning of the term homolytic bond fission. [1]

		Examine
4.	Hydrofluorocarbons, HFCs, are synthetic compounds which have replaced chlorofluorocarbons, CFCs, as refrigerants in cooling systems because they do not deplete the ozone layer.	only
	Explain why HFCs do not deplete the ozone layer. [2]	
5.	Draw the structure of (<i>E</i>)-2-iodobut-2-ene. [2]	
ο.	Draw the structure of (<i>E</i>)-2-iodobut-2-ene. [2]	

PMT

6. The diagram below shows the distribution of energies of gas molecules in a reaction at 20 °C.

(a) On the same axes, draw a curve to show the distribution of energies of the same gas molecules with the reaction at 10 °C. [1]

(b) Use the diagram to explain the difference in reaction rate between the two reactions. [2]

	 	 • • • • • •	 · • • • • • •	 														
• • • • •	 	 	 															
	 	 		 			 	 	 	 	 		 	 	 			٠.

10

© WJEC CBAC Ltd. (B410U20-1)

Turn over.

SECTION B

Answer all questions.

7. Propan-2-ol is the simplest example of a secondary alcohol. It is a common ingredient in many antiseptics.

	an-2-ol.	OI
of wa	irit burner containing propan-2-ol was placed under a beaker containing 100 cm ³ ater. The burner was ignited and the alcohol allowed to burn until the temperature e water rose by 25.4 °C. After the burner had cooled it was found that 0.362 g of an-2-ol had been burned.	
(i)	State what is meant by a secondary alcohol.	[1]
(ii)	Write an equation for the complete combustion of propan-2-ol.	[1]
(iii)	Calculate a value for the enthalpy change of combustion of propan-2-ol in kJ mol ⁻¹ .	[4]

(iii)	Calculate a value for the enthalpy change of combustion of propan-2-ol in	
	kJ mol ⁻¹ .	[4]

 $\Delta_{\rm c}H=$ kJ mol⁻¹

PMT

(iv)	The teacher said that the actual value for the enthalpy change of combustion of propan-2-ol is $-2006\mathrm{kJmol}^{-1}$.
	Calculate the percentage error in the student's experimental value. [1]
	Percentage error =%
(v)	Suggest one reason, other than heat loss, why the value obtained for the enthalpy

(b) The equation for the combustion of propene is as shown.

$$C_3H_6(g) + 4\frac{1}{2}O_2(g) \longrightarrow 3CO_2(g) + 3H_2O(g)$$
 $\Delta_cH^{\theta} = -2058 \text{ kJ mol}^{-1}$

(i) Use this and the average bond enthalpy values given in the table to calculate the average bond enthalpy for the O = O bond. [4]

Bond	Average bond enthalpy/kJ mol ⁻¹
c = c	612
c-c	348
C — H	412
c=o	805
O—H	463

Average bond enthalpy = $kJ mol^{-1}$

(ii) Suggest why the student could not use the method in (a) to determine the enthalpy change of combustion of propene.

[1]

PMT

(c)	to fo	oan-2-ol can react with ethanoic acid in the presence of concentrated sulfuric acid rm an ester and water. This reaction is reversible so an equilibrium mixture is uced and the ester is removed by distillation.	
	(i)	Write the equation for the reaction between propan-2-ol and ethanoic acid.	
		Clearly show the structure of the ester formed.	[2]
	(ii)	Explain fully why the ester can be separated from the equilibrium mixture by distillation.	[2]
	(iii)	Explain why the yield of ester in the equilibrium mixture is increased by removing the ester.	[1]
		II. Concentrated sulfuric acid is a dehydrating agent.	
		Suggest why the yield of ester in the equilibrium mixture is increased by adding concentrated sulfuric acid.	[1]

19

© WJEC CBAC Ltd. (B410U20-1) Turn over.

410U201

PMT

201	
10 U	
, 4 ,	7

Alkenes can be obtained by cracking long-chain hydrocarbons. They are more reactive than alkanes. (i) The use of fossil fuels to meet our energy needs has many disadvantages, but there are some benefits. Give one advantage of the use of fossil fuels. (ii) Name a solid pollutant that may form if a fossil fuel is burned incompletely in air. (iii) Explain why alkenes are more reactive than alkanes. (2) (iv) One molecule of decane, C ₁₀ H ₂₂ , can be cracked to give one molecule of pentane and two other products. Write an equation for this reaction.	3.	(a)		nes and alkenes are hydrocarbons. Alkanes can be obtained from fossil fuels suc etroleum.	:h
there are some benefits. Give one advantage of the use of fossil fuels. (ii) Name a solid pollutant that may form if a fossil fuel is burned incompletely in air. [1] (iii) Explain why alkenes are more reactive than alkanes. [2] (iv) One molecule of decane, C ₁₀ H ₂₂ , can be cracked to give one molecule of pentane and two other products.			Alke than	nes can be obtained by cracking long-chain hydrocarbons. They are more reactiv alkanes.	e
(ii) Name a solid pollutant that may form if a fossil fuel is burned incompletely in air. [1] (iii) Explain why alkenes are more reactive than alkanes. [2] (iv) One molecule of decane, C ₁₀ H ₂₂ , can be cracked to give one molecule of pentane and two other products.			(i)		
(iii) Explain why alkenes are more reactive than alkanes. [2] (iv) One molecule of decane, C ₁₀ H ₂₂ , can be cracked to give one molecule of pentane and two other products.				Give one advantage of the use of fossil fuels.	[1]
(iv) One molecule of decane, C ₁₀ H ₂₂ , can be cracked to give one molecule of pentane and two other products.			(ii)	Name a solid pollutant that may form if a fossil fuel is burned incompletely in air	
and two other products.			(iii)	Explain why alkenes are more reactive than alkanes.	[2]
and two other products.					
and two other products.					
Write an equation for this reaction. [1]			(iv)	One molecule of decane, $C_{10}H_{22}$, can be cracked to give one molecule of penta and two other products.	ne
				Write an equation for this reaction.	[1]

© WJEC CBAC Ltd. (B410U20-1) Turn over.

(b) The information given below relates to liquid **X**.

Quantitative analysis shows that it contains 29.2% carbon and 5.8% hydrogen by mass. The remainder is bromine.

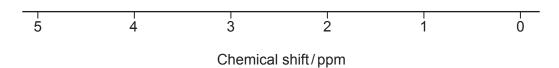
The mass spectrum shows two molecular ion signals at m/z 122 and m/z 124 in the ratio of 1:1.

Its ^{13}C NMR spectrum is shown below.

(i) Use **all** the information to identify liquid **X**.

[5]

•••••		



PMT

(ii) Sketch the low resolution ¹H NMR spectrum of liquid **X**.

Identify which protons are responsible for each peak giving the approximate chemical shift (ppm) and the relative area of each peak.

[2]

B410U201 13

12

(a) A student is provided with unlabelled samples of the three liquids listed below. 1-chloropropane hex-1-ene propanoic acid Describe chemical tests, apart from the use of an indicator, that the student should out to positively identify each of the three liquids. You should include balanced equations for any reactions that occur. [6 C	Carry QER
Describe chemical tests, apart from the use of an indicator, that the student should cout to positively identify each of the three liquids.	
out to positively identify each of the three liquids.	
You should include balanced equations for any reactions that occur. [6 C	QER
	•••••
	•••••

PMT

(b) 1-Chloropropane, C₃H₇Cl, can be converted into propylamine, C₃H₇NH₂.

If the percentage yield of the reaction is 34.5%, calculate the mass of propylamine made from $8.93\,g$ of 1-chloropropane.

Give your answer to an appropriate number of significant figures.

[3]

$$M_{\rm r}({\rm C_3H_7CI}) = 78.6$$

$$M_{\rm r}({\rm C_3H_7NH_2}) = 59.1$$

Mass of propylamine = _____g

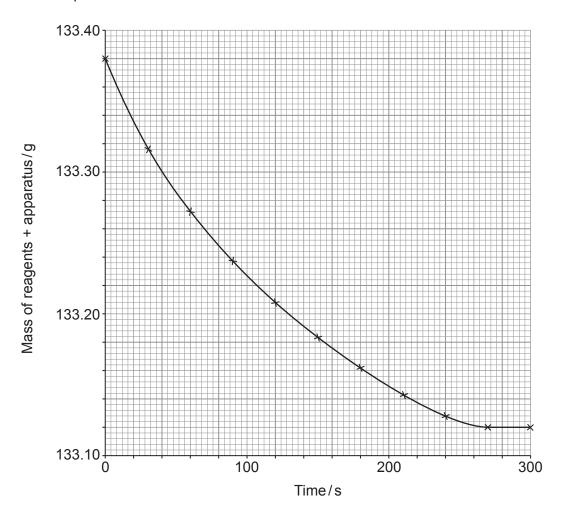
9

10. A student carried out an experiment to study the rate of the reaction between barium carbonate and hydrochloric acid.

Examiner only

BaCO₃ + 2HCI
$$\longrightarrow$$
 BaCl₂ + H₂O + CO₂
 M_r 197

He started with 1.50 g of barium carbonate and $30.0\,\mathrm{cm^3}$ of $0.400\,\mathrm{mol\,dm^{-3}}$ hydrochloric acid. The experiment was carried out at 25 °C and 1 atm.


He determined the rate by following the loss in mass over 5 minutes.

1	a١	State which reactant is in excess	. Use the data given to justify your answer.	[2
ľ	a)	State Willer reactant is in excess.	. Ose the data given to justify your answer.	[4

The student plotted his results as follows.

Examiner only

(b) (i) Use the graph to calculate the **mean** rate of the reaction, in $g s^{-1}$. [1]

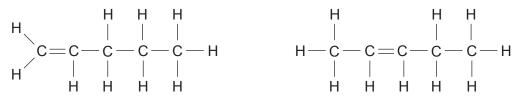
Mean rate = $g s^{-1}$

(ii) Use the graph to calculate the **initial** rate of the reaction, in gs^{-1} . [2]

Initial rate = $g s^{-1}$

(ii) Use collision theory to explain why the rate of this reaction changes as the reaction proceeds. [2] (d) Outline the method the student used to carry out this experiment. A diagram may be used in support of your answer. [3]	(c)	(i)	Use the graph to describe how the rate of the reaction changes over the 5 minutes.	[1]
A diagram may be used in support of your answer. [3]		(ii)	Use collision theory to explain why the rate of this reaction changes as the reaction proceeds.	[2]
	(d)			[3]

© WJEC CBAC Ltd.


(e) Another method to follow this reaction is by measuring the volume of carbon dioxide produced over time. Name the apparatus you would use to collect the carbon dioxide. [1] (f) Use the graph to calculate the volume (in cm³) of carbon dioxide formed during this reaction at 25 °C. You must show your working. [2] Volume = cm³ (g) Another student said that if you used the same mass of calcium carbonate instead of barium carbonate, the volume of carbon dioxide formed would be less because the relative formula mass of calcium carbonate is less. Is she correct? Justify your answer. [2]				Examiner
(f) Use the graph to calculate the volume (in cm³) of carbon dioxide formed during this reaction at 25 °C. You must show your working. [2] Volume = cm³ (g) Another student said that if you used the same mass of calcium carbonate instead of barium carbonate, the volume of carbon dioxide formed would be less because the relative formula mass of calcium carbonate is less. Is she correct? Justify your answer. [2]	(e)			only
reaction at 25 °C. You must show your working. [2] Volume =cm ³ (g) Another student said that if you used the same mass of calcium carbonate instead of barium carbonate, the volume of carbon dioxide formed would be less because the relative formula mass of calcium carbonate is less. Is she correct? Justify your answer. [2]		Name the apparatus you would use to collect the carbon dioxide.	[1]	
Volume =cm³ (g) Another student said that if you used the same mass of calcium carbonate instead of barium carbonate, the volume of carbon dioxide formed would be less because the relative formula mass of calcium carbonate is less. Is she correct? Justify your answer. [2]	(f)	Use the graph to calculate the volume (in cm ³) of carbon dioxide formed during this reaction at 25 °C.		
 (g) Another student said that if you used the same mass of calcium carbonate instead of barium carbonate, the volume of carbon dioxide formed would be less because the relative formula mass of calcium carbonate is less. Is she correct? Justify your answer. [2] 		You must show your working.	[2]	
 (g) Another student said that if you used the same mass of calcium carbonate instead of barium carbonate, the volume of carbon dioxide formed would be less because the relative formula mass of calcium carbonate is less. Is she correct? Justify your answer. [2] 				
(g) Another student said that if you used the same mass of calcium carbonate instead of barium carbonate, the volume of carbon dioxide formed would be less because the relative formula mass of calcium carbonate is less. Is she correct? Justify your answer. [2]				
 (g) Another student said that if you used the same mass of calcium carbonate instead of barium carbonate, the volume of carbon dioxide formed would be less because the relative formula mass of calcium carbonate is less. Is she correct? Justify your answer. [2] 				
barium carbonate, the volume of carbon dioxide formed would be less because the relative formula mass of calcium carbonate is less. Is she correct? Justify your answer. [2]		Volume =	cm ³	
	(g)	barium carbonate, the volume of carbon dioxide formed would be less because the	f	
		Is she correct? Justify your answer.	[2]	
			···········	
				16

11. Five non-cyclic structural isomers have the molecular formula C₅H₁₀.

Three of these are shown below.

$$H - C - C = C - C - C - H$$
 $H + H + H + H$

pent-2-ene

$$C = C - C - C - F$$
 $C = C - C - C - F$
 $C = C - C - C - F$

3-methylbut-1-ene

Draw the structures of the other **two** isomers. (a)

Do **not** include both the *E* and the *Z* isomer of the same structure.

[2]

only

Examiner Compound **A** is one of the five isomers on the previous page. (b) Study the reaction scheme and the information below. major product HBr(g) Α C₅H₁₀ addition В NaOH(aq) substitution $\operatorname{Cr_2O_7}^{2-}(\operatorname{aq})/\operatorname{H}^+(\operatorname{aq})$ Al₂O₃/heat C D dehydration complete oxidation Ε Compound **D** does **not** react with aqueous sodium carbonate. Compound **E** does **not** show *E-Z* isomerism. Use the information to name the homologous series to which compounds B-E (i) belong. Give your reasoning. [6]

(ii)	State what you would observe when compound C is oxidised to compound D .	[1]
(iii)	Compound B can also undergo an elimination reaction.	
	State the reagent(s) and conditions needed for this reaction.	[1]
(iv)	Compound A can only be 3-methylbut-1-ene.	
	It cannot be pent-2-ene because its reaction with HBr would give two products significant quantities.	in
	I. Explain why compound A cannot be pent-1-ene.	[2]
	II. Explain why compound A cannot be either of the two isomers drawn in part (a).	[2]

END OF PAPER

Turn over. © WJEC CBAC Ltd. (B410U20-1)

14

Question Additional page, if required. Number Write the question number(s) in the left-hand margin.	only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Exam onl
-		
		···········
		·····
		······

GCE AS

TUESDAY, 23 MAY 2023 - MORNING

CHEMISTRY – AS component 2 Data Booklet

Avogadro constant
molar gas constant
molar gas volume at 273 K and 1 atm
molar gas volume at 298 K and 1 atm
Planck constant
speed of light
density of water
specific heat capacity of water
ionic product of water at 298 K
fundamental electronic charge

 $N_A = 6.02 \times 10^{23} \,\mathrm{mol}^{-1}$ $R = 8.31 \,\mathrm{J\,mol}^{-1} \,\mathrm{K}^{-1}$ $V_m = 22.4 \,\mathrm{dm}^3 \,\mathrm{mol}^{-1}$ $V_m = 24.5 \,\mathrm{dm}^3 \,\mathrm{mol}^{-1}$ $h = 6.63 \times 10^{-34} \,\mathrm{J\,s}$ $c = 3.00 \times 10^8 \,\mathrm{m\,s}^{-1}$ $d = 1.00 \,\mathrm{g\,cm}^{-3}$ $c = 4.18 \,\mathrm{J\,g}^{-1} \,\mathrm{K}^{-1}$ $K_w = 1.00 \times 10^{-14} \,\mathrm{mol}^2 \,\mathrm{dm}^{-6}$ $e = 1.60 \times 10^{-19} \,\mathrm{C}$

temperature (K) = temperature (°C) + 273

$$1 \,dm^3 = 1000 \,cm^3$$

 $1 \,m^3 = 1000 \,dm^3$
 $1 \,tonne = 1000 \,kg$
 $1 \,atm = 1.01 \times 10^5 \,Pa$

Multiple	Prefix	Symbol
10 ⁻⁹	nano	n
10 ⁻⁶	micro	μ
10 ⁻³	milli	m

Multiple	Prefix	Symbol
10 ³	kilo	k
10 ⁶	mega	М
10 ⁹	giga	G

Infrared absorption values

Bond	Wavenumber/cm ⁻¹
C-Br	500 to 600
C-CI	650 to 800
C-O	1000 to 1300
C = C	1620 to 1670
C = O	1650 to 1750
$C \equiv N$	2100 to 2250
$C\!-\!H$	2800 to 3100
O — H (carboxylic acid)	2500 to 3200 (very broad)
O — H (alcohol / phenol)	3200 to 3550 (broad)
N-H	3300 to 3500

13 C NMR chemical shifts relative to TMS = 0

Type of carbon	Chemical shift, δ (ppm)
$-\overset{\mid}{c}-\overset{\mid}{c}-$	5 to 40
R — C — CI or Br	10 to 70
R-c-c- 0	20 to 50
R-C-N	25 to 60
c_o	50 to 90
c = c	90 to 150
$R-C \equiv N$	110 to 125
	110 to 160
R — C — (carboxylic acid / es	ter) 160 to 185
R — C — (aldehyde / ketone) O	190 to 220

¹H NMR chemical shifts relative to TMS = 0

Type of proton	Chemical shift, δ (ppm)
−CH₃	0.1 to 2.0
R-CH ₃	0.9
$R-CH_2-R$	1.3
$CH_3-C\equiv N$	2.0
CH ₃ -C	2.0 to 2.5
$-CH_2-C$	2.0 to 3.0
\bigcirc CH ₃	2.2 to 2.3
HC-Cl or HC-Br	3.1 to 4.3
HC-O	3.3 to 4.3
R-OH	4.5 *
-C = CH	4.5 to 6.3
-c = cH - co	5.8 to 6.5
\leftarrow CH=C	6.5 to 7.5
◯ ⊢H	6.5 to 8.0
ОН	7.0 *
R-C H $R-C$ O OH	9.8 *
R-COH	11.0 *

^{*}variable figure dependent on concentration and solvent

© WJEC CBAC Ltd. (B410U20-1A) Turn over.

THE PERIODIC TABLE

							Ξ	H Ph	HE PERIODIC IABI	<u>ာ</u>		4						
	_	7					Group	dn					က	4	2	9	_	0
Period	s block	A Sc Sc															'	
~	1.01 H ydrogen						Key											4.00 Heling
	200						re Te	relative				,			d d	p block		2
7	6.94 Li Lithium 3	9.01 Be Beryllium				Sy.	Symbol Name a	mass . atomic number					10.8 B Boron 5	12.0 C Carbon 6	14.0 Nitrogen	16.0 O Oxygen 8	19.0 F Fluorine 9	20.2 Neon
က	23.0 Na Sodium	24.3 Mg Magnesium					d block	충				1	Aluminium 13	Silicon	31.0 Phosphorus	32.1 S Sulfur 16	35.5 Cl Chlorine 17	40.0 Ar Argon 18
4	39.1 K	40.1 Ca Calcium 20	Scandium 21	47.9 Ti Titanium 22	50.9 Vanadium 23	52.0 Cr Chromium 24	Manganese 25	55.8 Fe Iron 26	58.9 Co Cobalt 27	58.7 Nickel	63.5 Cu Copper 29	65.4 Zn Zinc 30	69.7 Ga Gallium	72.6 Ge Germanium	74.9 As Arsenic	79.0 Se Selenium 34	79.9 Br Bromine 35	83.8 Kr Krypton 36
5	85.5 Rb Rubidium 37	87.6 Sr Strontium	88.9 Y Yttrium 39	91.2 Zr Zrconium 40	92.9 Nb Niobium 41	95.9 Mo Molybdenum 42	98.9 Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	Ag Silver	Cd Cd Cadmium 48	115 In Indium 49	Sn Tin 50	Sb Antimony 51	128 Te Tellurium 52	127 	Xenon 54
9	133 Cs Caesium 55	137 Ba Barium 56	139 La Lanthanum 57	179 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 r ridium 77	195 Pt Platinum 78	Au Au Gold 79	201 Hg Mercury 80	204 TI Thallium 81	207 Pb Lead	209 Bi Bismuth	(210) Po Polonium 84	(210) At Astatine 85	(222) Rn Radon 86
7	(223) Fr Francium 87	(226) Ra Radium 88	(227) Ac b Actinium 89	,						f ble	f block						,	
		▶ Laı el∢	► Lanthanoid elements	140 Ce Cerium 58	141 Pr Paseodymium 59	144 Nd Neodymium 60	(147) Pm Promethium 61	Samarium 62	(153) Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	163 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	73 Yb Ytterbium 70	175 Lu Lutetium 71	
		•	Actinoid elements	232 Th Thorium 90	(231) Pa Protactinium 91	238 U Uranium 92	(237) Np Neptunium 93	(242) Pu Plutonium 94	(243) Am Americium 95	(247) Cm Curium 96	(245) BK Berkelium 97	(251) Cf Californium 98	(254) Es Einsteinium 99	(253) Fm Fermium	(256) Md Mendelevium 101	(254) No Nobelium 102	(257) Lr Lawrencium 103	